Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Asian Pacific Journal of Tropical Biomedicine ; (12): 47-58, 2022.
Article in Chinese | WPRIM | ID: wpr-950202

ABSTRACT

Objective: To explore the anticoagulant, antiplatelet and antioxidant activities of protein extract of kenaf seed (PEKS). Methods: Sodium dodecyl sulphate polyacrylamide gel electrophoresis and reverse-phase high-performance liquid chromatography techniques were employed for protein characterization. Antioxidant activity of PEKS was assessed using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The protective effect of PEKS on sodium nitrite (NaNO 2) induced oxidative stress was evaluated using the in vitro red blood cell model, while the effect of PEKS on diclofenac-induced oxidative stress was examined in vivo in rats. Platelet-rich plasma and platelet-poor plasma were used for anticoagulant and antiplatelet activities of PEKS. Results: PEKS revealed similar protein bands on SDS-PAGE under reduced and non-reduced conditions. Several acidic proteins were present in native PAGE. PEKS showed antioxidant properties by scavenging DPPH with an IC 50 of 24.58 μg. PEKS exhibited a protective effect on NaNO 2 induced oxidative stress in red blood cells by restoring the activity of stress markers. In addition, PEKS alleviated diclofenac-induced tissue damage of the liver, kidney, and small intestine. PEKS showed an anticoagulant effect in both in vivo and in vitro experiments by enhancing normal clotting time. PEKS did not affect prothrombin time but increase activated partial thromboplastin time. Furthermore, PEKS inhibited adenosine diphosphate and epinephrine-induced platelet aggregation. Conclusions: PEKS protects tissues from oxidative stress and exhibits antithrombotic activity.

2.
Asian Pacific Journal of Tropical Medicine ; (12): 47-58, 2022.
Article in Chinese | WPRIM | ID: wpr-941593

ABSTRACT

Objective: To explore the anticoagulant, antiplatelet and antioxidant activities of protein extract of kenaf seed (PEKS). Methods: Sodium dodecyl sulphate polyacrylamide gel electrophoresis and reverse-phase high-performance liquid chromatography techniques were employed for protein characterization. Antioxidant activity of PEKS was assessed using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The protective effect of PEKS on sodium nitrite (NaNO 2) induced oxidative stress was evaluated using the in vitro red blood cell model, while the effect of PEKS on diclofenac-induced oxidative stress was examined in vivo in rats. Platelet-rich plasma and platelet-poor plasma were used for anticoagulant and antiplatelet activities of PEKS. Results: PEKS revealed similar protein bands on SDS-PAGE under reduced and non-reduced conditions. Several acidic proteins were present in native PAGE. PEKS showed antioxidant properties by scavenging DPPH with an IC 50 of 24.58 μg. PEKS exhibited a protective effect on NaNO 2 induced oxidative stress in red blood cells by restoring the activity of stress markers. In addition, PEKS alleviated diclofenac-induced tissue damage of the liver, kidney, and small intestine. PEKS showed an anticoagulant effect in both in vivo and in vitro experiments by enhancing normal clotting time. PEKS did not affect prothrombin time but increase activated partial thromboplastin time. Furthermore, PEKS inhibited adenosine diphosphate and epinephrine-induced platelet aggregation. Conclusions: PEKS protects tissues from oxidative stress and exhibits antithrombotic activity.

SELECTION OF CITATIONS
SEARCH DETAIL